Knowledge representation and reasoning (KRR, KR&R, KR) is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology[1] about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build. Knowledge representation and reasoning also incorporates findings from logic to automate various kinds of reasoning, such as the application of rules or the relations of sets and subsets.
Examples of knowledge representation formalisms include semantic nets, systems architecture, frames, rules, and ontologies. Examples of automated reasoning engines include inference engines, theorem provers, and classifiers.
frames in knowledge representation pdf free
The earliest work in computerized knowledge representation was focused on general problem-solvers such as the General Problem Solver (GPS) system developed by Allen Newell and Herbert A. Simon in 1959. These systems featured data structures for planning and decomposition. The system would begin with a goal. It would then decompose that goal into sub-goals and then set out to construct strategies that could accomplish each subgoal.
These efforts led to the cognitive revolution in psychology and to the phase of AI focused on knowledge representation that resulted in expert systems in the 1970s and 80s, production systems, frame languages, etc. Rather than general problem solvers, AI changed its focus to expert systems that could match human competence on a specific task, such as medical diagnosis.[2]
It was not long before the frame communities and the rule-based researchers realized that there was a synergy between their approaches. Frames were good for representing the real world, described as classes, subclasses, slots (data values) with various constraints on possible values. Rules were good for representing and utilizing complex logic such as the process to make a medical diagnosis. Integrated systems were developed that combined frames and rules. One of the most powerful and well known was the 1983 Knowledge Engineering Environment (KEE) from Intellicorp. KEE had a complete rule engine with forward and backward chaining. It also had a complete frame-based knowledge base with triggers, slots (data values), inheritance, and message passing. Although message passing originated in the object-oriented community rather than AI it was quickly embraced by AI researchers as well in environments such as KEE and in the operating systems for Lisp machines from Symbolics, Xerox, and Texas Instruments.[4]
The integration of frames, rules, and object-oriented programming was significantly driven by commercial ventures such as KEE and Symbolics spun off from various research projects. At the same time as this was occurring, there was another strain of research that was less commercially focused and was driven by mathematical logic and automated theorem proving.[citation needed] One of the most influential languages in this research was the KL-ONE language of the mid-'80s. KL-ONE was a frame language that had a rigorous semantics, formal definitions for concepts such as an Is-A relation.[5] KL-ONE and languages that were influenced by it such as Loom had an automated reasoning engine that was based on formal logic rather than on IF-THEN rules. This reasoner is called the classifier. A classifier can analyze a set of declarations and infer new assertions, for example, redefine a class to be a subclass or superclass of some other class that wasn't formally specified. In this way the classifier can function as an inference engine, deducing new facts from an existing knowledge base. The classifier can also provide consistency checking on a knowledge base (which in the case of KL-ONE languages is also referred to as an Ontology).[6]
Another area of knowledge representation research was the problem of common-sense reasoning. One of the first realizations learned from trying to make software that can function with human natural language was that humans regularly draw on an extensive foundation of knowledge about the real world that we simply take for granted but that is not at all obvious to an artificial agent. Basic principles of common-sense physics, causality, intentions, etc. An example is the frame problem, that in an event driven logic there need to be axioms that state things maintain position from one moment to the next unless they are moved by some external force. In order to make a true artificial intelligence agent that can converse with humans using natural language and can process basic statements and questions about the world, it is essential to represent this kind of knowledge.[citation needed] One of the most ambitious programs to tackle this problem was Doug Lenat's Cyc project. Cyc established its own Frame language and had large numbers of analysts document various areas of common-sense reasoning in that language. The knowledge recorded in Cyc included common-sense models of time, causality, physics, intentions, and many others.[7]
Currently, one of the most active areas of knowledge representation research are projects associated with the Semantic Web.[citation needed] The Semantic Web seeks to add a layer of semantics (meaning) on top of the current Internet. Rather than indexing web sites and pages via keywords, the Semantic Web creates large ontologies of concepts. Searching for a concept will be more effective than traditional text only searches. Frame languages and automatic classification play a big part in the vision for the future Semantic Web. The automatic classification gives developers technology to provide order on a constantly evolving network of knowledge. Defining ontologies that are static and incapable of evolving on the fly would be very limiting for Internet-based systems. The classifier technology provides the ability to deal with the dynamic environment of the Internet.
The justification for knowledge representation is that conventional procedural code is not the best formalism to use to solve complex problems. Knowledge representation makes complex software easier to define and maintain than procedural code and can be used in expert systems.
Knowledge representation goes hand in hand with automated reasoning because one of the main purposes of explicitly representing knowledge is to be able to reason about that knowledge, to make inferences, assert new knowledge, etc. Virtually all knowledge representation languages have a reasoning or inference engine as part of the system.[11]
A key trade-off in the design of a knowledge representation formalism is that between expressivity and practicality. The ultimate knowledge representation formalism in terms of expressive power and compactness is First Order Logic (FOL). There is no more powerful formalism than that used by mathematicians to define general propositions about the world. However, FOL has two drawbacks as a knowledge representation formalism: ease of use and practicality of implementation. First order logic can be intimidating even for many software developers. Languages that do not have the complete formal power of FOL can still provide close to the same expressive power with a user interface that is more practical for the average developer to understand. The issue of practicality of implementation is that FOL in some ways is too expressive. With FOL it is possible to create statements (e.g. quantification over infinite sets) that would cause a system to never terminate if it attempted to verify them.
Thus, a subset of FOL can be both easier to use and more practical to implement. This was a driving motivation behind rule-based expert systems. IF-THEN rules provide a subset of FOL but a very useful one that is also very intuitive. The history of most of the early AI knowledge representation formalisms; from databases to semantic nets to theorem provers and production systems can be viewed as various design decisions on whether to emphasize expressive power or computability and efficiency.[12]
Knowledge representation and reasoning are a key enabling technology for the Semantic Web. Languages based on the Frame model with automatic classification provide a layer of semantics on top of the existing Internet. Rather than searching via text strings as is typical today, it will be possible to define logical queries and find pages that map to those queries.[9] The automated reasoning component in these systems is an engine known as the classifier. Classifiers focus on the subsumption relations in a knowledge base rather than rules. A classifier can infer new classes and dynamically change the ontology as new information becomes available. This capability is ideal for the ever-changing and evolving information space of the Internet.[14]
The Semantic Web integrates concepts from knowledge representation and reasoning with markup languages based on XML. The Resource Description Framework (RDF) provides the basic capabilities to define knowledge-based objects on the Internet with basic features such as Is-A relations and object properties. The Web Ontology Language (OWL) adds additional semantics and integrates with automatic classification reasoners.[15]
This paper surveys representation and processing theories arising out of conceptual dependency theory. One of the primary characteristics of conceptual dependency was the notion of a canonical form, built out of a small number of primitive representations. Although the notion of primitives has largely been lost in subsequent work, many other of the basic notions of CD have remained. In particular, the idea of building representations around inferential capabilities has prevailed in this family of research. The result is a set of representational structures, all of which are highly knowledge-intensive. The use of these structures in various processing theories has led to knowledge-based theories of language understanding, planning, reasoning and other tasks, which have contrasted sharply with the traditional search-oriented approaches used in other systems. 2ff7e9595c
Comments